Masonry Magazine August 2004 Page. 26

Masonry Magazine August 2004 Page. 26

Masonry Magazine August 2004 Page. 26
GROUT

In this species the faces are wrought. The stones are, without working, deposited in the cavity between the two faces, and bedded in mortar as the wall is carried up...so that there are thus three distinct thicknesses; namely, the two side or facings, and filling in.

With the exception of steel reinforcement (e.g., rebar), Vitruvius' description sounds similar to the grouting process in reinforced brick masonry of today as described by the Brick Institute of America: "...the brick masonry is the permanent formwork for the grout."

Had the technology existed, perhaps the citizens of Pompeii could have benefited from using steel reinforcement in the construction of their walls. Pompeii's buildings were constructed in a manner similar to that described by Vitruvius, and are a perfect example of what can happen with non-reinforced masonry in an active seismic region. The fate of Pompeii is well known Mount Vesuvius erupted in A.D. 79, burying the city in volcanic ash, encapsulating some of its more unlucky citizens. Archeologists have uncovered evidence that some of the masonry walls were damaged and subsequently repaired in A.D. 62. Evidence suggests a mode of failure associated with seismic loadings due to a severe earthquake that year.

Masonry of the 20th Century

THE COST OF MATERIALS at the turn of 20th century made the advent of concrete masonry units, which were first molded manually in 1882, an important advancement in masonry technology. In 1900, Harmon S. Palmer earned a patent for developing a commercial process for producing hollow concrete block. In 1904, a hand-tamp block machine was developed, and in 1909, an automated-tamp and power self-discharging machine was introduced.

Another important innovation was the introduction of reinforced masonry. Marc Isambard Brunel is credited with the introduction of reinforced masonry in 1813 when he suggested using steel to reinforce a chimney that was under construction. The practice of reinforcing masonry walls became extremely popular after the 1933 earthquake in Long Beach, Calif. According to the National Information Service for Earthquake Engineering at the University of California, Berkley, the Long Beach earthquake-with an estimated magnitude of 6.25 on the Richter scale-resulted in catastrophic structural damage to unreinforced masonry structures. However, buildings that were constructed using reinforced masonry technology survived the earthquake with little or no structural damage.

Infrared imagery of two different grout placements. The placement on the left contains a large void approximately two-thirds up the wall.

Current Technology

WITH ALL OF THE STRENGTH of today's building materials, the essential nature of grout in reinforced masonry is sometimes lost until you have a firm understanding of the science behind it.

Grout is placed in a series of lifts into cavities between wythes and within cores and cells of both brick and block walls. Grout is essential for the transfer of lateral stresses from the block or brick to the steel reinforcement. The difference between conventional grout and concrete is that it has a high water-to-cementitious ratio and, as a consequence, possesses a slump between eight and 11 inches (20.3 cm to 27.9 cm). The high slump allows for easier consolidation, especially with areas where steel is congested. The high water-to-cementitious ratio compensates for the suction of moisture by the masonry units. Common problems associated with grouting include voids (see images above) caused by using a grout that is too stiff, bridging at cell offsets, or other obstructions.

High-lift grouting was developed in San Francisco in the late 1950s. The Masonry Standards Joint Committee recently approved a code change that increases the maximum lift height from five feet to 12 feet eight inches. This change was based on research conducted at the National Concrete Masonry Association (NCMA). With conventional grout, the lifts still need to be consolidated using external vibration.

Self-consolidating grout is the latest innovation in masonry construction. There is currently no definition in the American

With the exception of steel reinforcement, Vitruvius description sounds similar to the grouting process in reinforced brick masonry of today.


Masonry Magazine December 2012 Page. 45
December 2012

WORLD OF CONCRETE

REGISTER NOW; RECEIVE A FREE HAT!
The first 25 people to register this month using source code MCAA will receive a free MCAA Max Hat (valued at $15.00)! The MCAA Max Hat features a 3D MCAA logo embroidered on front with a

Masonry Magazine December 2012 Page. 46
December 2012

Index to Advertisers

AIRPLACO EQUIPMENT
888.349.2950
www.airplace.com
RS #296

KRANDO METAL PRODUCTS, INC.
610.543.4311
www.krando.com
RS #191

REECHCRAFT
888.600.6060
www.reechcraft.com
RS #3

Masonry Magazine December 2012 Page. 47
December 2012

AMERIMIX
MORTARS GROUTS STUCCOS

Why Amerimix Preblended Products?

576

The choice is CLEAR:

Consistency

Labor reduction

Enhanced productivity

ASTM - pretested to ASTM specifications

Masonry Magazine December 2012 Page. 48
December 2012

MASON MIX
Type S Mortar
QUIKRETE
www.quikrete.com
800-282-5828

MASON MIX
Type 5 Mortar
COMMERCIAL GRADE
QUIKRETE

Our mortar mix on Vail's Solaris was so consistent, every bag was like the next. And the next